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ABSTRACT

In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many
ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts
in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota.
Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental
heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution
from micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine
stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches
that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing
approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change.
We then take a forward-looking viewpoint on how alpine stream biologists can make better use of existing data sets
through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and
apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the
future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid
environmental change in these sentinel ecosystems.
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I. INTRODUCTION

Alpine streams are often remote and represent some of
the world’s most pristine freshwater ecosystems, primarily
due to limited anthropogenic impacts. Nevertheless, the
highest rates of climate change are occurring above the
permanent treeline in alpine and arctic ecosystems (Bradley
et al., 2006; Prowse et al., 2006). Alpine biota are particularly
vulnerable to rapid environmental warming due to the
combined effects of high mountaintop insularity and upslope
shifts of distributional ranges into increasingly smaller areas
of suitable habitat (e.g. Walther, Beissner & Burga, 2005;
Galbreath, Hafner & Zamudio, 2009; Rubidge et al., 2012).
Climate change is also substantially shrinking alpine glacier
and snowfield mass (Hall & Fagre, 2003; Hansen et al.,
2005; Rauscher et al., 2008; Pederson et al., 2010), resulting
in hydrologic shifts in existing streams (Milner, Brown &
Hannah, 2009; Jacobsen et al., 2014b) and new freshwater
habitat taking the place of once-perennial ice (e.g. Finn,
Räsänen & Robinson, 2010). Furthermore, the upslope
advance of treeline into previously alpine habitat is likely
to significantly affect the basal resources of aquatic food
webs (Hauer et al., 1997; Hood et al., 2015). Alpine streams
are important strongholds for biodiversity and production of
food web subsidies versus the comparatively harsh terrestrial
environment. However, global alpine stream biodiversity is
being negatively impacted across multiple levels of taxonomic
resolution (Jacobsen et al., 2012; Wilhelm et al., 2013; Finn
et al., 2014).

Alpine streams are highly environmentally heterogeneous,
even across small spatial extents (<1 km), primarily due
to variation in hydrologic source contributions, including
glacier melt, snowmelt and rain run-off, groundwater
springs, and others. Each source type results in a unique
signature of stream flow, temperature, sediment load,
and chemistry (Ward, 1994), although individual sources
rarely act in isolation, especially when seasonal melting is
occurring (Füreder et al., 2001; Smith et al., 2001; Brown,
Hannah & Milner, 2003). Therefore, alpine stream networks
are habitat mosaics harbouring significant beta diversity
(differentiation among sites) both in terms of species diversity
(e.g. Finn & Poff, 2005; Brown, Hannah & Milner, 2007b;
Jacobsen et al., 2012; Kubo et al., 2012) and genetic diversity
(Finn, Khamis & Milner, 2013; Finn et al., 2014; Leys
et al., 2016). Many alpine stream species are uniquely
adapted to cold, harsh conditions (Füreder, 1999; Lencioni,
Boschini & Rebecchi, 2009; Lencioni et al., 2015) and often

endemic (e.g. Finn & Poff, 2008; Muhlfeld et al., 2011;
Giersch et al., 2015, 2016).

Diminishing hydrologic influence of glaciers and
permanent snowfields is expected to ultimately result in
environmental homogenization of alpine streams. Predicted
biological effects at the regional scale include increased local
(α) diversity as more-diverse assemblages shift upstream, but
decreased among-stream (β) diversity as meltwater-specific
assemblages are lost (Jacobsen et al., 2012; Cauvy-Fraunié
et al., 2015a). The predicted erosion of regional-scale (γ )
biodiversity associated with the homogenization of alpine
stream habitat conditions includes both eukaryotes and
prokaryotes (Wilhelm et al., 2013), with associated negative
implications for microbially mediated ecosystem function.
And, although accelerated melting of the alpine cryosphere
may initially benefit cold-adapted stream organisms as
increased meltwater volume pushes harsh conditions farther
downstream (Jacobsen et al., 2014b), these conditions will be
short-lived as meltwater sources eventually dwindle (Jacobsen
et al., 2012).

Generally, species at risk of extirpation under changing
environmental conditions have three options to persist:
migrate to more suitable habitat, leverage a plastic response
to the changing environment, or adapt (Hoffman & Sgrö,
2011; Pauls et al., 2013). For dispersal-limited alpine taxa,
migration is an unlikely solution as species become caught in
‘summit traps’ at the upper, isolated end of available habitat
(Pertoldi & Bach, 2007; Phillipsen & Lytle, 2012; Sheldon,
2012). As life history responses tend to be plastic in stream
insects, an in situ plastic response to environmental change
may be the most likely mechanism for population and species
persistence, relative to long-distance migration or adapta-
tion, at least in the short term (Treanor et al., 2013; Lencioni
& Bernabó, 2015; Madsen et al., 2015). Furthermore, the
potential for adaptation of alpine populations to changing
conditions will depend upon standing genetic variation in
genes that are relevant to the specific environmental changes
occurring (Barrett, Roger & Schluter, 2008; Hohenlohe
et al., 2010). Ultimately, local extinctions at the scale of
individual streams can be expected for dispersal-limited
taxa that are restricted to cold, meltwater-influenced
alpine streams (Giersch et al., 2015). However, with better
understanding of both species’ adaptive potential and the
distribution of stream types (and associated environmental
characteristics) that are expected to be more resistant to the
effects of climate change, management strategies aimed at
preventing extinctions may be possible.
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A rich early history in alpine stream biology spanned mul-
tiple continents and emphasized the relationship between
species assemblages and environmental conditions (Stein-
mann, 1907; Thienemann, 1912; Dodds & Hisaw, 1925;
Steinböck, 1934; Dorier, 1937; Léger, 1937; Mathews, 1951;
Martinelli, 1959). The field began to develop substantially
following reviews by Ward (1994) on the environmental
and biological heterogeneity of alpine streams, and Milner
& Petts (1994), who developed a conceptual model of the
influence of glacier meltwater on stream biology at both
high altitudes and latitudes. Because the field has continued
to grow rapidly – potentially exceeded in pace only by the
rate of climate change itself – specific topical reviews have
appeared relatively regularly in the intervening two decades.
These include a review of the sensitivity of alpine streams
to various human impacts (McGregor et al., 1995), revisits
of the Milner & Petts (1994) model of glacier-melt influence
(Brittain & Milner, 2001; Milner, 2016), a review of our
understanding of biological responses to hydrologic change
in glacier-influenced streams (Milner et al., 2009), and a
summary of primarily biogeochemical effects of meltwater
hydrology in alpine lakes and streams (Slemmons, Saros &
Simon, 2013).

Given the exceptionally high natural biodiversity con-
tributed by flowing water habitat to alpine regions and the
vulnerability of these systems to rapid environmental change,
episodic reviews of the state of the science are essential.
Here, for the first time since Ward (1994), we review
the current state and future promise of organism-focused
research in alpine streams, including all high-altitude
lotic systems both with and without the presence of
glaciers. We define ‘organism-focused’ as any research
where the taxonomic identity of individual specimens is
essential, including intraspecific genetic diversity, microbial
community diversity, ecological responses of single species,
and various ways of measuring eukaryotic community
diversity. We build significantly on previous reviews
that have emphasized glacier-influenced hydrology and
macroinvertebrate species assemblages (e.g. Milner & Petts,
1994; Brittain & Milner, 2001; Milner et al., 2009). Our
organism-focused review also complements the recent
ecosystem-focused review of Slemmons et al. (2013). We
begin with a summary of seven major approaches historically
and currently applied to organism-focused ecology of alpine
streams, including both long-standing, standard approaches
and emerging approaches based on either newly developed
methodological tools or novel concepts. We then take a
forward-looking perspective on how alpine stream research
could be bolstered through the thoughtful integration of
long-standing approaches with emerging concepts and
technologies, improved and more-standardized monitoring
of alpine stream ecosystems on a global scale, and increased
collaboration across disciplines (e.g. remote sensing and
organismal biology). Ultimately, our aim is to provide a
unified front to aid alpine stream biologists in overcoming
conceptual and methodological hurdles in the field, while
also confronting the pressing challenge of understanding

the implications of rapid global change on sensitive alpine
stream ecosystems in real time.

II. CURRENT APPROACHES

(1) Linking organisms to environment

Alpine streams are biologically diverse due to their significant
environmental heterogeneity and relative isolation, which
limits the distribution of specialized taxa and promotes
endemism (Brown et al., 2007b; Füreder, 2007). Early
research provided valuable descriptions of the spatial het-
erogeneity of alpine streams and their species assemblages
(e.g. Tynen, 1970; Lavandier & Décamps, 1983; Ward,
1986), and this observational foundation linking organisms
to environment has continued to expand in recent years
(Muhlfeld et al., 2011; Kubo et al., 2012; Thompson et al.,
2013; Cauvy-Fraunié et al., 2014b; Khamis et al., 2014a;
Laursen et al., 2015; Lencioni & Spitale, 2015; Giersch et al.,
2016; Tronstad, Hotaling & Bish, 2016). Generally, these
studies integrate taxonomy and environmental parameters
to describe patterns of species diversity with habitat. This
approach has resulted in a global perspective on the
environmental drivers of alpine stream biodiversity – as
influenced both by local environmental filtering across the
variety of alpine stream types and by limited dispersal
among isolated alpine areas – and provided a plethora
of snapshots to which future observational data can be
compared (see approach 2). Much of the historical effort
applying this standard, observational approach was focused
in Europe, but alpine stream research on other continents
has also been represented to varying degrees with North
and South America receiving considerable recent attention
(Fig. 1). Still, many alpine regions – including mountain
ranges within comparatively well-studied continents – have
been understudied or overlooked.

Inferences about the effects of rapid environmental
change on alpine stream biodiversity within this obser-
vational approach rely on a space-for-time framework,
in which a gradient of spatial conditions is expected to
represent the temporal trajectory of environmental change.
Because a significant impact of climate change in alpine
streams is the ongoing decline of glacier and snowfield
mass (Oerlemans, 2005; Jacob et al., 2012), many studies
have emphasized biological responses to spatial gradients
of hydrologic conditions, typically from glacier-fed to
groundwater-dominated stream reaches (Milner et al., 2008,
2009; Finn et al., 2010, 2013, 2014; Jacobsen et al., 2012;
Cauvy-Fraunié et al., 2014b, 2015a). Various indices have
been developed to quantify the proportional influence of
glacier meltwater on local stream environments and biota
(e.g. Ilg & Castella, 2006; Brown, Hannah & Milner, 2007a;
Jacobsen & Dangles, 2012; reviewed by La Frenierre &
Mark, 2014), and implementations of the space-for-time
approach in different alpine regions often support a general
conclusion: that decline in meltwater conditions will likely
decrease regional biodiversity (Jacobsen et al., 2012; Fig. 2).
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Fig. 1. Continental distribution of alpine stream biology research published before and after seminal publications by Ward (1994)
and Milner & Petts (1994), denoted by the vertical dashed line. The left y-axis and histogram bars are studies per continent across
5-year intervals for the period 1995–2015 and ∼35-year intervals for 1925–1994 (the asterisk indicates a 6-year interval where
data are scaled by a factor of 0.833 to be equivalent to the other modern 5-year periods). The right y-axis and black line reflect the
cumulative number of studies on all continents through time. To generate a literature database, we first added known citations to a
combined database. Next, this database was supplemented through two Web of Science searches: (a) for ‘‘alpine stream* ecology’’ OR
‘‘alpine stream* biology and (b) for ‘‘alpine’’ AND ‘‘stream’’ AND ‘‘gene*’’. Searches were conducted for the years 1925–2015. The
references included as data for this figure are marked with an asterisk in the References list.

Space-for-time studies also provide important starting
points for identifying regions, stream types, or taxa most
at risk from climate change, but correlations between extant
biological diversity and current environmental conditions
have limitations particularly when projecting future changes
to single localities. They do not consider: changes in
assemblage structure that could alter biotic interactions
through time (Brown & Milner, 2012; Clitherow, Carrivick
& Brown, 2013; Khamis et al., 2015); the adaptive potential
of resident species to changing conditions (e.g. Barrett
et al., 2008; Hohenlohe et al., 2010); or how changes in
specific environmental factors might differentially influence
altitudinal distributions of individual species (Jacobsen, 2008;
Loayza-Muro et al., 2013a; Giersch et al., 2015; Leys et al.,
2016). Furthermore, many space-for-time predictions are
based on comparisons between extant meltwater-fed and
non-meltwater-fed (e.g. groundwater) streams. As such,
they tend to not consider the potential for meltwater
streams to become seasonally intermittent, a possibly
fatal flaw considering that little is known about how
dwindling meltwater sources influence groundwater aquifers
in alpine regions (Haldorsen & Heim, 1999). Certainly, a
complete disappearance of permanent stream habitat can be
expected to have substantially greater impacts on biodiversity
than, for example, a meltwater habitat transitioning to
groundwater-fed habitat.

(2) Tracking and modelling temporal change

Studies that resample the same locations through time or
use historical occurrence data can demonstrate explicit
biotic responses to environmental change and provide
empirical data for testing model-based predictions of species
occurrences and range shifts. For example, Sheldon (2012)
collected two species of stoneflies along an elevation and
stream-size gradient in the Great Smoky Mountains in both
1977–1978 and 2006 to assess the magnitude of upstream
range shifts in response to climate change in the region. With
known rates of warming for the area (∼0.72◦C over the
study period), these data provided an empirical assessment
of a general model-based prediction (+11 m/decade) of
upslope shifts for biotic assemblages (Chen et al., 2011).
Results revealed differential responses of the two study
species, with evidence for an uphill shift in one but not the
other, suggesting that factors other than water temperature
influence elevational distributions of stream-dwelling species
in the Great Smoky Mountains (Sheldon, 2012). In a similar
example from alpine streams, Giersch et al. (2015) combined
contemporary sampling of an alpine stonefly, Zapada

glacier, with historical records and a known temperature
increase in Glacier National Park (0.67–1◦C) over a
52-year study period (1960–2012). The results pointed to a
climate-change-induced range contraction of Z. glacier into
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Fig. 2. Cumulative decrease of regional species richness (γ diversity) as a function of glacial cover. Glacier-obligate
macroinvertebrates begin disappearing when glacial cover drops below approximately 50%. Each data point represents a
river site. Figure modified with permission from Jacobsen et al. (2012).

the uppermost limits of the streams where it historically
occurred. With alpine stream monitoring efforts becoming
more common, exciting opportunities exist for resampling
prior snapshots (approach 1) to analyse the rate and nature
of single-site temporal change.

Glacier recession can also unveil virgin stream channels,
providing an opportunity for temporal studies of colonization
and succession in glacier-fed stream environments. Milner
et al. (2008) monitored colonization and succession of an
Alaskan stream community over nearly three decades,
and Finn et al. (2010) assessed the impact of rapid glacial
recession over a 10-year period on macroinvertebrates and
environmental features along an alpine stream gradient in the
Swiss Alps. Both studies generally corroborated inferences
from space-for-time research, showing that newly exposed
and early successional glacier-fed stream habitats supported
assemblages of cold-hardy species that likely colonized
these habitats from downstream reaches with recently
reduced meltwater influence. However, Finn et al. (2010)
also demonstrated that the rate of temperature increase
with stream distance below a glacial source had significantly
steepened over a single decade, an observation that would
not have been predicted in a space-for-time framework.

Beyond retrospective empirical studies, species distribution
models (SDMs) predict future distributions by integrating
occurrence data and associated environmental factors, and
projecting these into the future under specific scenarios
(e.g. climate change models). SDMs have become essential
tools in conservation biology (Elith & Leathwick, 2009) but

are currently underrepresented in alpine streams [but see
Bálint et al. (2011); Muhlfeld et al. (2011) and Giersch et al.
(2016)]. Although limited, these studies predict significant
threats to alpine biodiversity due to loss of glaciers
(Muhlfeld et al., 2011; Giersch et al., 2016) or more general
mountaintop habitat decline (Bálint et al., 2011). Alpine
stream biology is poised for increased application of SDMs
to assess future threats to biodiversity, perhaps with a
focus on developing implementations that account for more
alpine-specific changes (e.g. shifts in meltwater influence
and/or new stream habitat being uncovered as glaciers
recede).

Predictive modelling has also been used to identify
ecological tipping points in glacial streams that represent
a point at which cold, stenothermic species assemblages may
be extirpated. For instance, a Threshold Indicator of Taxa
Analysis (TITAN; Baker & King, 2010) identified thresholds
of < 5.1% glacier cover and < 66.6% meltwater contribution
as tipping points where more generalist macroinvertebrates
would begin to replace cold-adapted specialists in Pyrenean
alpine stream communities (Khamis et al., 2014a). When
viewed in isolation, it is impossible to make predictions about
how strongly these results apply to other glaciated alpine
regions, but this type of region-specific predictive modelling
provides a valuable glimpse into potential points-of-no-return
for alpine stream diversity. Future assessments carried out
with the same methodology in additional regions hold the
potential for clarifying alpine stream ecological tipping points
from a global perspective.
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(3) Characterizing microbial diversity and function

Alpine glaciers and snowfields, and the extreme cryophilic
habitat they represent, provide habitat for diverse microbial
communities, including on the surface of glaciers (Anesio
& Laybourn-Perry, 2012), below glaciers (Hamilton et al.,
2013), in meltwater streams (Wilhelm et al., 2013), and
stream sediments (Fegel et al., 2016). Until recently,
microbial biodiversity and function in alpine headwaters
had been largely unexplored. This disconnect is particularly
noteworthy considering that stream microbial communities
have been widely recognized for their general importance
to biodiversity, ecosystem processes, and biogeochemistry
(Zeglin, 2015; Battin et al., 2016). Microbial biofilms in
particular alter physical and chemical microhabitats, acting
as living zones of transient organic molecule storage.
Moreover, because local-scale diversity of multicellular
organisms is often relatively low in alpine streams, diverse
microbial communities could play a disproportionate role in
the ecology of alpine streams.

Structure and function of alpine stream microbial commu-
nities vary depending upon hydrology (Freimann et al., 2013,
2014; Wilhelm et al., 2013, 2014) and local habitat, whether
streamwater, biofilm, sediments, or glacial snow and ice
(Wilhelm et al., 2013, 2014; Fegel et al., 2016). In Swiss alpine
floodplains, microbial community structure and enzymatic
function are influenced by sediment pH, conductivity, and
other physicochemical conditions affected by the presence
of glacial meltwater (Freimann et al., 2013, 2014). To under-
stand the connection between glacial ice and downstream
microbial diversity better, Wilhelm et al. (2013) characterized
16S rDNA diversity of microorganisms in streamwater,
biofilm, and source glacial ice for 26 glacier-fed streams
in the Austrian Alps (Fig. 3). This approach revealed that
glacier retreat is likely to increase within-stream microbial α

diversity while reducing among-stream β diversity, a pattern
similar to that predicted for alpine macroinvertebrates as
local environmental conditions become less harsh but more
homogeneous (Jacobsen & Dangles, 2012; Jacobsen et al.,
2012). In a subsequent study, Wilhelm et al. (2014) used
an RNA sequencing approach to compare the abundances
of RNA (the product of cellular processes) to DNA for
microbiota in the same Austrian streams. Their findings
revealed that rare taxa (from a total DNA perspective;
Wilhelm et al., 2013) play a disproportionate role in
microbial community dynamics of alpine glacier-fed streams
(Wilhelm et al., 2014). By comparing abundance of RNA
versus DNA, it is possible to move beyond descriptions of
biodiversity patterns to understand the activity of microbial
life in alpine streams better and identify which taxa are most
important under a given set of sampling conditions (e.g. time
of day, season, flow, etc.). Given the role of microbial life
in dictating biogeochemical processes [e.g. carbon fixation
(Singer et al., 2012) or nitrogen cycling (Dodds & Smith,
2016)], any clarification of microbial diversity and activity,
as well as the environmental conditions both are linked to,
will greatly improve understanding of how alpine stream
ecosystems function.

A warming climate is also expected to affect basal resources
(and microbial dynamics) in alpine streams, particularly in
terms of organic carbon (OC), as glaciers recede, treelines
rise, and stream energy inputs shift (Hood et al., 2015;
Wilhelm et al., 2015). Mountain glaciers store considerable
OC, primarily within englacial (the glacial core where
light does not penetrate) and basal ice (Hood et al., 2015).
However, the implications of the accelerated release of this
glacially derived OC on downstream ecosystems remain
unclear (Hood et al., 2015), although links between glacially
derived OC, microorganisms, macroinvertebrates, and fish
have been made in Alaskan streams (Fellman et al., 2015).
This is particularly important for heterotrophic microbial
communities as glacial OC is significantly more biologically
available than dissolved OC from other inputs (e.g. vascular
plants; Singer et al., 2012). A slowly climbing treeline is also
relevant to the availability of OC in alpine streams primarily
because trees add an additional input of allocthonous
dissolved OC. Below treeline, specialization by biofilm
bacteria in response to more diverse allochthonous and
autochthonous dissolved OC has been hypothesized to drive
shifts from more-generalist biofilm communities (in terms of
functional traits related to the utilization of resources) above
treeline to specialist-rich communities below. In a study of
three alpine streams in the Swiss Alps, this hypothesis was
partially supported with generalist microbiota dominating
biofilm communities along an altitudinal gradient (including
above and below treeline), and specialists gaining importance
with increasing distance downstream of the treeline (Wilhelm
et al., 2015). Furthermore, questions of treeline shifts, energy
inputs, and available OC may be further complicated in
alpine streams by seasonality as energy inputs vary with
magnitude of glacial discharge (Fenoglio et al., 2015).

(4) Life-history response to changing environments

Like many aspects of alpine stream biology, life histories
of alpine macroinvertebrates are poorly understood. In the
context of environmental change, population persistence
could depend on the potential for life-history traits (e.g.
development rate, emergence timing, size at maturity, and
other reproductive traits) to respond rapidly to abiotic
change. For aquatic insects, most life-history traits are
highly plastic, at least within certain bounds (e.g. Vannote
& Sweeney, 1980; Newbold, Sweeney & Vannote, 1994).
Or, if adaptive, such traits may respond quickly to natural
selection (Poff et al., 2006). Hence, if selection pressures in
alpine streams naturally vary spatially and/or temporally,
resident insects could have a strong capacity to respond
through phenotypic plasticity (e.g. Vannote & Sweeney,
1980; Stearns, 1989), adaptation (e.g. Hynes, 1976; Gray,
1981; Lytle, 2001; Lytle & Poff, 2004; Lytle, Bogan & Finn,
2008), or a combination of the two.

Diversity in life-history traits may provide the raw material
for selection, adaptation, and persistence of species in the
face of rapid environmental change (cf. Schindler et al., 2010),
particularly if the characteristic environmental heterogeneity
of alpine streams across small spatial extents translates
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Fig. 3. Distribution of microbial taxonomic groups in glacial ice, streamwater, and biofilm. The percentage of (A) phyla and (B)
the 50 most abundant families associated with each habitat are visualized in ternary plots. Position within each triangle indicates
the relative abundance of each taxon among the three habitats. Circle size represents the relative abundance of taxa overall. Figure
modified with permission from Wilhelm et al. (2013).
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to intraspecific diversity in life histories. Indeed, many
aquatic insects inhabiting steep temperature gradients (as
is common in alpine streams) exhibit life-history variation
along the gradient. For example, Rhyacophila evoluta, an alpine
caddisfly, can enter diapause at any instar, which translates
to a 1-, 2-, or 3-year life cycle depending upon thermal
conditions (Décamps, 1967). At high elevations, the alpine
mayfly Baetis alpinus is semivoltine (2-year life cycle), larger at
maturity, and females produce more eggs, while at low
elevations, it is univoltine (1-year life cycle), smaller at
maturity, and females produce on average approximately
25% fewer eggs (Lavandier & Décamps, 1984). Interestingly,
Allogamus uncatus, another alpine caddisfly, showed life-history
patterns more-or-less opposite of expectations in stream
reaches 0.9–1.7 km downstream of a glacier (Shama &
Robinson, 2009). Individuals closest to the glacier tended
to reach pupation more rapidly and be smaller at maturity
than those furthest away (Fig. 4A). However, the study
reaches were part of a complex alpine floodplain, and
upstream–downstream patterns of environmental variation
did not vary as expected with distance from the glacier,
likely due to patchy groundwater inputs (Uehlinger, Malard
& Ward, 2003; Ward & Uehlinger, 2003) and minimal
elevation difference (Shama & Robinson, 2009). These results
highlight that spatial heterogeneity among alpine streams
even over a very small spatial extent can significantly amplify
intraspecific life-history variation.

Life-history traits of alpine stream insects might also
respond quickly to temporal environmental variation. In
a 2-year study of insect emergence in a Rocky Mountain
alpine stream, Finn & Poff (2008) found that emergence
timing of four common species (a caddisfly, a stonefly,
and two mayflies) was significantly later in a year
following an above-average winter snowpack, compared
to one preceded by a below-average snowpack (Fig. 4B).
Documentation of these temporal differences in the same
location suggests phenotypic plasticity, likely in response
to degree-day accumulation, which depends heavily on
duration of snowpack covering streams. Although largely
unexplored, changes in snow accumulation and melt
timing likely impact insect emergence, and therefore could
affect connectivity among populations. Questions concerning
life-history diversity and physiological limits on plasticity and
adaptive potential in obligate alpine stream species remain
underexplored but should be important foci in future studies
addressing the potential for species persistence under rapidly
changing conditions.

(5) Population genetics

Population genetics has a rich history informing many aspects
of evolutionary and conservation biology, but has been
under-represented in alpine streams. To date, genetic studies
on alpine stream organisms have focused on estimating
population structure, demography, gene flow, and the
impacts of glacier recession on intraspecific genetic variation
(Monaghan et al., 2001, 2002; Finn & Adler, 2006; Finn et al.,
2006, 2014; Li et al., 2009; Bálint et al., 2011; Elbrecht et al.,

(A)

(B)

Fig. 4. (A) Examples of fine-scale spatial variation in life-history
traits of alpine stream insects. Plots indicate population-level
differences in rate of growth [ln(mg) day–1], mass at emergence
(mg), and time to pupation (measured from third-instar larvae to
the onset of pupation; days) for permanent stream populations of
the alpine caddisfly, Allogamus uncatus, with increasing distance
from glaciers in the Val Roseg floodplain of the Swiss Alps.
Results were averaged across treatments in a common garden
experiment. (B) An example of temporal variation in life-history
traits. Histograms indicate the date at which 25% of the
cumulative abundance of emerging adults was reached for four
common alpine stream species (Ephemeroptera: Ameletus celer
and Cinygmula sp., Plecoptera: Alloperla pilosa, and Trichoptera:
Asynarchus nigriculus) along an alpine stream in the Rocky
Mountains, USA. Samples were collected in 2 years: 2002,
which followed an exceptionally dry winter, and 2003, which
followed a winter with an above-average snowpack. Emergence
timing was significantly earlier for all species in 2002. Data for
(A) were redrawn (and approximated) from Fig. 5 in Shama &
Robinson (2009). Data for (B) are from Finn & Poff (2008).
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Fig. 5. Projected loss or extinctions of morphologically
diagnosed species, molecular operational taxonomic units
(MOTUs) identified as having < 2% sequence divergence,
general mixed Yule-coalescent (GMYC; Monaghan et al.,
2009) species delimited using a model-based approach, and
mitochondrial DNA (mtDNA) haplotypes for nine montane
stream insects in Europe under 2 IPCC 2080 CO2 emission
scenarios as inferred from future species distribution modelling.
Green slices indicate units predicted to persist under both future
emission scenarios and red slices indicate units predicted to
go extinct under one or both scenarios. Circles are scaled
proportionally by total units for each classification. Figure
modified with permission from Bálint et al. (2011).

2014; Geismar et al., 2015; Giersch et al., 2015, 2016; Jordan
et al., 2016). These studies have identified a general trend
among alpine stream taxa of relatively high levels of genetic
differentiation among populations, indicative of spatial
isolation and limited gene flow (e.g. Finn et al., 2006), as
well as taxon-specific patterns including putative sex-biased
dispersal (e.g. Elbrecht et al., 2014) and variation in the
influence of landscape features on population connectivity
(e.g. Geismar et al., 2015). These molecular studies have
tended to focus on single species, but some comparisons
have been made across related or co-occurring species.
For example, a multi-species comparison revealed that
differences among species in dispersal behaviour appear to
be both order-specific (e.g. caddisflies were found to be better
dispersers than mayflies) and dependent upon spatial scale
(Monaghan et al., 2002). In a study combining population
genetics and SDM for nine montane macroinvertebrates,
results indicated that loss of genetic diversity under future
warming scenarios is predicted to greatly exceed that of more
traditional biodiversity metrics (e.g. morphologically defined
species, Fig. 5; Bálint et al., 2011).

An emerging genetic focus is understanding how
decreasing habitat heterogeneity associated with glacial

recession will impact intraspecific genetic variation. Using
a space-for-time approach, Finn et al. (2013) classified 18
alpine stream reaches in the French Pyrénées as high-,
mid-, or low-‘glaciality’, according to physicochemical
variables linked to meltwater influence (Ilg & Castella,
2006). Population structure of B. alpinus was significantly
greater among high-glaciality streams (Fig. 6), indicating that
decreasing habitat heterogeneity associated with shrinking
glacial influence could lead to reduced regional-scale genetic
variation. Furthermore, B. alpinus sampled from two recently
deglaciated mountain ranges south of the Pyrénées had
significantly lower regional-scale genetic diversity than at
a similar spatial scale in the still-glaciated Pyrénées (Finn
et al., 2014). In another B. alpinus study, evidence from both
mitochondrial DNA (mtDNA) and microsatellites revealed
two distinct cryptic lineages that occurred in sympatry
with differentiation between the two seemingly driven by
elevation and habitat (one lineage was more abundant in
groundwater-fed tributaries versus glacier-fed streams; Leys
et al., 2016). It will be important to monitor and understand
how climate-induced environmental homogenization of
alpine streams might also erode existing patterns of genetic
diversity, particularly given the role of genetic diversity as
the template for natural selection.

Moving forward, significant opportunity exists to take
advantage of next-generation sequencing (NGS) to address
fundamental questions in alpine stream biology through
the analysis of genome-scale data. While NGS inquiry is
becoming commonplace within biological research, it is still
under-represented in freshwater science at large (Pauls et al.,
2014), and particularly in the context of alpine streams. NGS
data sets allow researchers to investigate the same questions
described above but at finer scales and higher resolution
while also providing the statistical power to address more
complex questions (e.g. selecting models of demographic
history, testing for signatures of natural selection). The
potential of NGS in alpine stream biology is evidenced
by two recent studies. A phylogeographic study of the
montane caddisfly Thremma gallicum employed thousands of
restriction-site-associated DNA sequencing (RADseq; Miller
et al., 2007; Baird et al., 2008; Andrews et al., 2016) markers
to assess models of demographic history and compare results
to those inferred using mtDNA data (Macher et al., 2015).
The RADseq data had much greater statistical power than
the mtDNA data to estimate genetic diversity, and to
discern among alternative phylogeographic hypotheses. The
second example used genotyping-by-sequencing (another
restriction-site-associated method for generating large
numbers of anonymous markers, see Elshire, Glaubitz &
Sun, 2011) to take a genome-wide perspective on genetic
differentiation among co-occurring winged and wingless
stonefly species of the genus Zelandoperla (Dussex, Chuah
& Waters, 2015). The results provided fine-scale evidence
of the implications of flight loss on genetic differentiation
as wingless populations of Z. fenestrata exhibited distinct
genetic structure whereas populations of winged Z. decorata

did not (Dussex et al., 2015). Furthermore, signatures of low
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Fig. 6. Distribution of common Baetis alpinus mitochondrial
DNA (mtDNA) haplotypes along four streams of the French
Pyrénées National Park. Stream drawings are approximations
and are reoriented such that glaciers (grey) are to the left, and
downstream-most sample reaches are to the right. Maximum
downstream distance of a sample reach is 4.5 km (Vignemale
basin). Coloured bars indicate haplotype abundance (total
N = 11–13 per reach as indicated by height of bars). Sample
reaches along streams are coded white for high-glaciality, grey
for mid-glaciality, and black for low-glaciality. Squares indicate
sites without B. alpinus populations. Figure modified with
permission from Finn et al. (2013). Copyright © 1999–2016,
John Wiley & Sons, Inc.

levels of hybridization between Z. fenestrata and Z. decorata
were recovered raising questions regarding the fluidity of
sympatric species and the possibility of dispersal-related
phenotypes introgressing between taxonomically distinct
taxa (Dussex et al., 2015). Beyond extensions to both the
power and diversity of analyses, NGS data sets also alleviate

many limitations of mtDNA markers (e.g. matrilineal
inheritance, no recombination), and application of these
methods does not depend on previous genomic knowledge
of the focal species. For these combined reasons, NGS
data sets hold great promise for alpine stream biologists to
describe existing genetic patterns better, address evolutionary
questions in the field, and refine predictions of how climate
change will affect alpine stream taxa.

(6) Characterizing functional traits

Describing biological communities according to functional
traits can provide a mechanistic understanding of the
relationships between communities and their environment.
This approach is used widely in stream ecology (Poff, 1997;
Usseglio-Polatera et al., 2000; Poff et al., 2006) and has clear
application to the heterogeneous environments of alpine
streams. Rather than taxonomic descriptions, species are
assigned traits related to habitat characteristics and environ-
mental response (Lamouroux, Dolêdec & Bayraud, 2004;
Statzner, Dolêdec & Hugueny, 2004). One requirement
for a traits-based approach is that the ecology of the taxa
under consideration is relatively well understood. This is a
challenge for rare, understudied alpine stream species that
also tend to face atypical environmental filters compared to
other stream types (Füreder, 1999; Lencioni, 2004).

In glacier-influenced streams, resilience and resistance
traits (e.g. streamlined bodies, high adult mobility, habitat
and feeding generalism, clinging behaviour, short life cycles)
are common among macroinvertebrates (e.g. Snook &
Milner, 2002) and provide advantages for coping with harsh
conditions (Füreder, 2007). Along gradients of decreasing
glacial influence in streams, such coping traits tend to
decrease in relative abundance, while others increase (Fig. 7),
with overall trait diversity rising in parallel with taxonomic
diversity (Ilg & Castella, 2006; Milner et al., 2009; Brown &
Milner, 2012). To this end, the harsh conditions of glacier-fed
streams may act as an environmental filter for both taxo-
nomic and functional diversity, but strength of response to
changes in glacial run-off appears to be highly taxon-specific
(Jacobsen et al., 2014a). These differential responses are
likely driven by varying types of coping traits among taxa
(Füreder, 2007), with some species possessing traits better
suited to one change (e.g. decreased suspended sediments),
and others possessing traits better suited to a different change
(e.g. increased water temperature). Certain ecophysiological
traits [e.g. cold hardiness, metabolic performance, tolerance
to ultraviolet (UV) radiation] are also likely drivers of species
distributions in harsh alpine stream environments; however,
the adaptive roles (and related physiology) of these traits
have rarely been addressed. For macroinvertebrates in
high-Andean streams for example, range shifts to higher
elevation in response to warming temperature will likely be
accompanied by a decrease in metabolic rate as a result of
oxygen limitation (Jacobsen & Brodersen, 2008), or upstream
range expansion might be limited by the negative effects
of increasing UV (Loayza-Muro et al., 2013a). These types
of perspectives linking possible physiological limitations
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Fig. 7. Mean relative abundance of eight species traits defined
as either resilience, resistance or harshness traits for 297
aquatic invertebrate taxa collected from 60 sites along 37
different rivers representing a gradient of glacial cover in
Hohe Tauern National Park, Austria. Resilience traits aid in
rapid return to pre-disturbance population densities following
a hydrologic disturbance. Resistance traits are linked to the
capacity of organisms to withstand a hydrologic disturbance
without significant loss of individuals. Harshness traits are linked
to the capacity of individuals to survive cold temperatures or
periods of low food availability. See Füreder (2007) for original
data and additional discussion of specific traits.

with scenarios of climate-change-induced range shifts can
provide the foundation for hypothesis-driven experiments to
assess the future viability of populations.

Two prominent selective agents in alpine streams are
constant cold temperature and seasonal formation of ice
(Lencioni, 2004; Danks, 2007). While water acts as a thermal
buffer minimizing extreme temperature fluctuation and
stream flow limits the formation of ice crystals (Danks, 1971;
Füreder, 1999), aquatic insects still experience long periods of
sustained cold during development which almost always takes
place under snow or ice (Lencioni, 2004). For freeze-tolerant
aquatic insects, one adaptive theme is the repeated evolution
of elevated concentrations of glycerol and/or ice-binding
factors (or anti-freeze proteins) in larval haemolymph
(Walters et al., 1998; Füreder, 1999; Lencioni, 2004; Danks,
2007; Lencioni et al., 2008, 2009, 2015; Lencioni & Bernabó,
2015). For instance, Lencioni et al. (2008, 2015) and Lencioni
& Bernabó (2015) comprehensively studied respiratory
performance and thermal limits of the midge Pseudodiamesa
branickii which inhabits glacier-fed streams in the Italian Alps.
Larvae of this species are tolerant to freezing to temperatures
as low as −16◦C and although the upper lethal temperature
of P. branickii may be as high as ∼32◦C, specimens appeared
stressed above 12◦C. These results suggest an adaptive
strategy by P. branickii to thrive in extremely cold glacier-fed
stream environments at the expense of effective competitive
abilities for persisting in warmer downstream habitats. With
increases in water temperature and associated decreases in
dissolved oxygen availability, specialists such as P. branickii
could lose their advantage in inhabiting glacier-fed streams

and be replaced by more generalist taxa with greater
competitive ability. Species turnover dictated by competition
in glacier-fed streams has been described previously for other
midges, including those of the genus Diamesa (see Saether,
1968; Nolte, 1991), and may represent a general mechanism
applicable to cold-tolerant macroinvertebrate communities
on a global scale (Flory & Milner, 2000). Furthermore, the
extreme conditions associated with glacier-fed streams and
the unique suite of traits required to withstand them likely
exacerbate trade-offs between competitive (e.g. temperature
generalism) and specialist traits (e.g. freeze-tolerant
larvae).

Evaluation and monitoring of trophic (feeding) traits is
also relevant to alpine stream biology as climates warm and
basal food resources shift from predominantly autochthonous
to allochthonous (Hauer et al., 1997). Trophic traits in
macroinvertebrates, including those driving specialization
by consumers on either algae or leaves, tend to be
phylogenetically constrained and therefore less likely to
respond to natural selection than other, more evolutionarily
labile traits (Poff et al., 2006). As such, strong shifts in food
resources might translate to relatively rapid changes in
the functional and taxonomic structure of alpine stream
assemblages and associated ecosystem-level processes (e.g.
Robinson & Gessner, 2000; Cauvy-Fraunié et al., 2016).

(7) Field experimentation

Experimentation under natural conditions is a powerful tool
for understanding the mechanisms of observed pattern and
process and for predicting ecological responses to climate
change. However, in situ experimentation in alpine streams is
rare, likely due to the logistical constraints of carrying out field
experiments in remote, harsh environments. Furthermore,
experiments in which natural conditions are manipulated for
long time periods (>1 year) are particularly rare, and even
short-term (single season or less) studies are uncommon.
Nonetheless, alpine streams offer useful opportunities for
field-based ecological experiments given their small size,
limited taxonomic diversity and ecological complexity,
minimal human impact, and natural habitat variation over
small spatial extents. These advantages also ought to attract
a broader swathe of ecologists looking for suitable ecological
systems for experimentation.

In perhaps the only long-term ecological field experiment
in alpine streams, Cauvy-Fraunié et al. (2016) conducted a
4-year experimental flow manipulation in the Ecuadorian
Andes, diverting one-third of natural discharge from a
glacier-fed stream to assess how decreased run-off affects eco-
logical pattern and process. Meltwater reduction increased
benthic algal and macroinvertebrate herbivore biomass and
changed macroinvertebrate community composition within
a few weeks. After the diversion was terminated and the
stream was returned to natural flow levels, the system did
not return to its pre-perturbation state for over a year. From
a climate change perspective, the rapid response to flow
diversion suggests that as meltwater influence is reduced,
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impacts to alpine stream ecosystems will occur rapidly across
a variety of biological metrics (Fig. 8).

Short-term field experiments have evaluated biological
drivers of organic matter decomposition rates in alpine
streams. For instance, experimentally increased nutrient con-
centrations in an alpine groundwater-fed stream spurred an
increase in shredder (detritus-feeding macroinvertebrates)
abundance and faster breakdown of detritus in leaf packs
(Robinson & Gessner, 2000). The authors speculated that
microbial assemblages colonizing leaves in these streams
are nutrient-limited, such that when nutrients were sup-
plemented, the microbially mediated quality of the leaf
litter increased, leading to the observed increase in shred-
der abundance and feeding activity. In another alpine
leaf-pack experiment focused on the relationship between
shredder diversity and ecosystem function (i.e. decom-
position rates), an interaction between shredder species
richness and abundance had the strongest impact on
decomposition rates in high-Andean streams (Dangles et al.,
2011). In this study, the three most-abundant shredder
species produced the greatest decomposition rates when
co-occurring, a result that implies some degree of com-
plementary resource use and/or facilitation among species
(Dangles et al., 2011). These findings suggest that differ-
ential climate-mediated range shifts (of both macroinver-
tebrates and terrestrially derived organic matter) could
decouple important biological interactions in alpine stream
ecosystems.

Experimental transplantation of species into novel
communities and/or environments can help researchers
understand how range shifts of alpine stream species might
impact biotic interactions and ecosystem processes. In an
Alaskan glacier-fed stream, transplanting stones colonized
by midges of the genus Diamesa between reaches at
different elevations demonstrated that the natural absence
of this species from lower elevation sites was due to
competitive exclusion rather than inability to tolerate the
local environmental conditions (Flory & Milner, 2000).
Similarly, Madsen et al. (2015) transplanted larvae of selected
macroinvertebrates upstream of their natural altitudinal limit
in a high-Andean glacier-fed stream to test the short-term
(two weeks) effect on survival. This treatment reduced
survival by varying degrees among taxa, but the stonefly
Claudioperla sp. survived well at a site where it did not naturally
occur, suggesting that altitudinal limits are not always directly
related to the abiotic environment, at least not in the short
term. Khamis et al. (2015) tested the potential impacts of
an introduced predator on natural species densities using
side channels constructed next to an alpine stream in the
French Pyrénées. By manipulating densities of the predacious
stonefly Perla grandis, which occurs in the same streams but
at slightly lower elevations, they simulated an upstream
range expansion of P. grandis and found that some (but
not all) prey species were reduced. The authors concluded
that the extinction risk of range-restricted prey taxa could
increase with upstream predator range shifts. From a broader
perspective, transplant studies demonstrate the utility of

short-term field experiments in alpine streams, particularly
in addressing the influence of rapid environmental change
on species interactions and ecosystem processes.

III. INTEGRATING MULTIPLE APPROACHES

The seven approaches for organism-focused research in
alpine stream biology described in Section II are not mutually
exclusive, and here, we argue that thoughtful integration of
multiple approaches will lead to more robust understanding
of these rapidly changing systems (e.g. Pauls et al., 2014).
Even in our discussion of each approach independently, it
is clear that many examples bridged multiple approaches.
For example, Shama & Robinson (2009) used common
garden experiments (approach 7) to understand life-history
variation (approach 4) of alpine caddisflies across a complex
environment; Snook & Milner (2002) and others evaluated
species traits (approach 6) to understand associations of
species with environmental conditions (approach 1); and
population genetic analysis of common species (approach
5) can be combined with the more traditional approach of
evaluating spatial patterns of assemblage diversity (approach
1) to generate a more thorough understanding of the
biological effects of environmental heterogeneity in alpine
streams (Finn et al., 2013). Future biological research in
alpine streams should emphasize continued integration,
with a particular emphasis on multiple levels of biological
organization (genes to assemblages, and prokaryotes to
eukaryotes) and a merging of the more traditional ‘snapshot’
observational approaches with experimentation and/or
emerging technologies (e.g. NGS).

Recent studies showcase the power and promise of highly
integrative research in alpine streams. For instance, Bálint
et al. (2011) evaluated the contemporary spatial distributions
of nine alpine/arctic macroinvertebrate morphospecies
(approach 1) and three levels of cryptic biodiversity
determined with population genetic methods (approach
5) for the same morphospecies. The authors then applied
SDM (approach 2) according to two climate models based
on future CO2 emissions scenarios to each of the four
levels of biodiversity independently. The results of their
integrative analysis suggested that biodiversity loss under
either climate model would be proportionally much greater
in terms of genetic variation than morphospecies diversity
(Fig. 5). This outcome supports a broader hypothesis that
rates of climate-related biodiversity loss (in fresh waters and
otherwise) will be significantly underestimated if measured
as impacts to morphological species diversity alone (e.g.
Dudgeon et al., 2006; Strayer & Dudgeon, 2010) without
consideration of intraspecific genetic diversity (Bálint et al.,
2011; Pauls et al., 2013).

Another promising example of integrating approaches is
the resampling of the same systems and species through time
(approach 2) and applying increasingly powerful population
genetic tools (approach 5) to understand specific biological
effects of rapid environmental change, including biodiversity,
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Fig. 8. Results from a flow-reduction experiment in an Ecuadorian glacier-fed stream where benthic samples were collected
at irregular intervals over a 4-year study period. The experimental reach was sampled for approximately 1 year prior to flow
manipulation (‘natural flow’). After this initial period, approximately one-third of the discharge was diverted away from the reach
for ∼ 1 year (‘reduced flow’). Natural flow then was re-established and the reach was monitored for another 2 years (‘recovered flow’).
Data shown include density of benthic macroinvertebrates (red), fauna dissimilarity (Bray-Curtis; black) versus an unmanipulated
upstream reference site, benthic chlorophyll (green), and total biomass of macroinvertebrate grazers (blue). Figure modified with
permission from Cauvy-Fraunié et al. (2016).

population structure, and demography. To our knowledge,
there have been just two published temporal comparisons
of genetic variation in alpine streams. In the first, Shama
et al. (2011) assessed genetic diversity both spatially and
temporally for the caddisfly, A. uncatus, before and after an
extreme drought in the Swiss Alps, revealing a significant
decrease in overall genetic diversity but an increase in
differentiation among populations over just two generations.
In the second, Jordan et al. (2016) compared genetic
diversity and patterns of population structure between
historic (>10 years old) and modern (2010) samples of
an endemic stonefly, Lednia tumana, threatened by climate
change in Glacier National Park, USA. The results indicated
decreased genetic diversity and increased subdivision among
populations in just 10 years, an alarming finding given the
near-term decline of the extremely cold glacier meltwater
that comprises much of L. tumana’s habitat in the region.
In the terrestrial alpine environment, a 90-year study of
two alpine chipmunk species in Yosemite National Park
revealed different population genetic responses to warming.
One species maintained connectivity and gene flow through
a largely unaffected range size over the study period, while
the second species underwent significant fragmentation and
genetic differentiation among populations likely as a result of
a 500 m upslope range contraction (Rubidge et al., 2012). In
alpine streams, a related question remains to be addressed:
will a changing climate affect population genetic structure
across communities in a synchronous way or will changes be
taxon-specific?

There are a number of other opportunities for novel
integrative research to address pressing questions in alpine
systems facing rapid change, particularly within the context

of whether plastic or adaptive responses in life-history traits
(approach 4) could have biological repercussions beyond
local population persistence. For example, differences in
emergence timing influenced by snowpack duration appear
to affect flight activity of insect species (Finn & Poff, 2008),
likely due to late-season colder air temperatures discouraging
adult flight activity. Differential dispersal through time can
affect regional-scale population persistence (approach 2)
and genetic diversity (approach 5), and potential responses
of both can be measured or modelled with molecular
methods (e.g. Bálint et al., 2011; Shama et al., 2011; Jordan
et al., 2016). Furthermore, spatial variation in development
rates and emergence timing between streams with different
temperature and flow regimes (e.g. a glacier-fed stream
versus a groundwater-fed spring) has been hypothesized as
a potential driver of reproductive isolation among stream
insect populations (Finn et al., 2013, 2014). As alpine streams
become more environmentally homogenous at the regional
scale, these life-history traits will likely follow suit. Future
research integrating the monitoring of temporal change
in environmental variation, life-history traits, population
structure, and genetic variation will improve understanding
of how these aspects of population biology are interconnected
in alpine streams.

IV. GLOBAL PERSPECTIVES, STANDARDIZED
METHODS, AND EMERGING TECHNOLOGIES

Beyond integration across the ‘standard seven’ approaches,
we also see fruitful opportunity associated with recent
and emerging technological advances. Examples of these
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include database management for long-term and universally
accessible storage of samples and data, high-resolution
remote sensing, and population genomics and associated
analytical tools (NGS, approach 5). We elaborate here on
methods and applications for seizing these opportunities in
alpine stream biology.

(1) Making the most of repeat sampling

Given the rapid pace of environmental change in alpine
streams, temporal monitoring of environmental parameters
and biota will be important to developing greater
understanding of the degree of vulnerability of these systems
to climate warming. To make the most of observational
data henceforth, alpine stream researchers should ideally
apply universally standard collection methods and proper
storage of samples to serve as temporal comparisons
for future studies. With the continued rise of powerful
genomic tools (e.g. RADseq; Andrews et al., 2016) and
development of advanced morphometric approaches (e.g.
micro-computed tomography; Verdú, Alba-Tercedor &
Jiménez-Manrique, 2012; Friedrich et al., 2014), properly
stored and annotated biological specimens will no doubt
provide useful genotypic and phenotypic reference points
for understanding rates and mechanisms of evolutionary
change as well as better understanding of existing variation.
Furthermore, standardized monitoring of environmental
parameters and biological assemblages will be essential
for linking habitat change to biological change at a
global scale.

In alpine stream biology, internationally accessible
database(s) and associated collaborative networks have been
proposed (e.g. Füreder & Schöner, 2013), but the idea has
yet to be realized. The spatially limited temporal data sets
discussed above (e.g. Milner et al., 2008; Finn et al., 2010;
Shama et al., 2011) provide useful precedents to justify a
unified effort towards the development of such a network.
Indeed, there are now international networks and databases
set up to monitor long-term change in other ecological
systems that alpine stream scientists can look to for guidance.
These include the Global Observation Research Initiative
in Alpine Environments (GLORIA), which emphasizes
the monitoring of terrestrial alpine plants (Grabherr,
Gottfried & Pauli, 2000), and the Global Lake Ecological
Observatory Network (GLEON), an international program
with standardized protocols for documenting environmental
change in lakes (Weathers et al., 2013; Read et al., 2016).
As with any integrated monitoring effort, a networked
alpine stream ecology database should provide explicit
guidelines on standardized protocols for measuring and
storing (if applicable) the unique suite of physicochemical,
hydrologic, and biological variables relevant to the system.
Discussions and previous large-scale research projects in the
past [e.g. Arctic and Alpine Stream Ecosystem Research
(AASER); Brittain & Milner, 2001] have emphasized a set
of appropriate environmental variables (with a focus on
hydrology) and collection methods for macroinvertebrate
assemblage data. We suggest adding standardized protocols

for storing and vouchering specimens for subsequent
genetic and/or morphometric analyses. Furthermore, it
will be important to recommend balanced spatial sampling
strategies within each alpine region added to an international
network (e.g. Füreder & Schöner, 2013), including multiple
drainage basins and hydrologically defined stream types
to address questions about landscape-scale connectivity,
population genetic structure, and the interacting influences
of local environment and spatial distance on biological
responses. By putting these goals in a standardized global
network, the field is poised to move beyond the story of one
range or species that may be an anomaly of local variation,
to the story of many species and ranges with the power to
portend more significant trends.

(2) Incorporating new and improved remote
sensing and GIS

Opportunity also exists for alpine stream biologists to
incorporate remote sensing technology and geographic
information system (GIS)-based approaches into future
research (e.g. Carbonneau & Piégay, 2012). Through these
tools, baseline measurements of landscape features specific
to alpine stream structure and function can be assessed
and serve as reference points for future research. Recent
developments in remote sensing technology for spatial
mapping (e.g. Light Detection and Ranging, LiDAR) as
well as aerial infrared sensing provide more accurate
(and more efficient) collection of stream and watershed
attributes than previously possible. Example applications
include, but are not limited to, monitoring of succession
at the watershed scale in recently deglaciated basins (Klaar
et al., 2015), remote measurements of stream temperature
(Handcock et al., 2012), and remote characterization of
watershed attributes (Hopkinson, Hayashi & Peddle, 2009).
Glacial and snowfield margins, as well as corresponding
stream networks, can also be digitized in GIS, quantified,
and compared with other time periods or localities (e.g.
del Rio et al., 2014; Hall et al., 2015) or linked with
existing biodiversity to assess ties between glaciers and
species occurrences more clearly (e.g. Giersch et al., 2016).
From the perspective of modelling threats to biodiversity,
finer-scale resolution of geologic and environmental change
can directly bolster predictions about future distributions
or environmental pressures. For all remote sensing projects
in alpine streams, it is important that imagery be captured
during later parts of the season to minimize ice coverage
and maximize stream resolution. Monitoring of glaciers and
the alpine environment – whether via remote sensing or
other methods – is not new (e.g. Francou et al., 2000; Hall &
Fagre, 2003; Rabatel et al., 2013). Rather, our take-home
message is the potential for alpine stream biologists to
cultivate collaborations with researchers carrying out existing
spatial monitoring and remote sensing efforts to inform links
between abiotic (e.g. glacier size, water temperature) and
biotic (e.g. algal growth) characteristics of alpine headwater
ecosystems.
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(3) Applying genome-wide perspectives to
understand evolutionary processes better

NGS and associated approaches (e.g. RADseq) for generating
large genomic data sets can significantly improve our
understanding of biological responses to rapid environmental
change in alpine streams, specifically in an evolutionary
context. Until recently, questions that required information
from a genome-wide perspective (e.g. identifying genes
under selection) were difficult even for model organisms
and out of reach for all other taxa. This is no longer
an issue for most species, thanks to the falling cost and
rising efficiency of NGS data collection. Genome-scale data
sets overcome many limitations of single- or few-marker
studies (e.g. an overemphasis on the unique evolutionary
history of the mitochondrial genome) that have been widely
applied in alpine stream biology. However, with orders
of magnitude more data and computationally intensive
analytical methodologies, implementing NGS approaches
requires specific laboratory and bioinformatic training. While
a full review of NGS applications is beyond the scope
of this review [but see Manel & Holderegger (2013) and
Andrews et al. (2016)], we discuss specific topics below
where an NGS toolkit could be particularly valuable
for studying alpine stream biota from a climate change
perspective.

A standing question in alpine stream biology is whether
population connectivity will be substantially altered with
the decline of cold meltwater habitat. Genome-scale data
sets are well suited to this challenge as they provide the
necessary power to resolve fine-scale variation in migration
among genetic clusters (e.g. Beerli, 2006) or can be used
to characterize migration as a subset of parameters in
an overarching demographic modelling framework (e.g.
Gutenkunst et al., 2009; Excoffier et al., 2013). Indeed, this
latter approach is particularly useful because, in addition
to estimating parameters like migration, it also provides
a means for simultaneous estimation of other aspects of
population biology and history (e.g. divergence times among
lineages, temporal changes in effective population sizes).
For instance, given the important role that fragmented
habitat plays in shaping genetic diversity (see approach 5),
constructing a timeline of population divergence provides an
outlet for linking divergence events with past landscape-level
processes (e.g. recession of glaciers after the Last
Glacial Maximum).

NGS data sets also represent a promising avenue
for identifying ecologically relevant genetic diversity, a
virtually unexplored realm in alpine stream biology. Using
predominantly neutral, genome-wide markers to reconstruct
the demographic history of populations provides a null
model for identifying outlier markers that are either portions
of genes responding to natural selection or are at least
in linkage with them (Nielsen et al., 2005). For example,
across a heterogeneous alpine stream network, if there is
strong enough selection to drive adaptive divergence between
populations in different habitats and enough time has passed
for signatures of this selection to accumulate, divergent

adaptation in outlier genes (e.g. a heat shock gene involved in
chaperoning cellular processes under cold stress; Matz et al.,
1995) may be observed. The potential for using genomic tools
to link genotype to phenotype holds particular relevance for
addressing questions of ecophysiology in a changing climate
(see approach 6). Specifically, understanding the genomic
mechanisms through which species have adapted to harsh
conditions (e.g. the evolution of anti-freeze proteins) can
also inform the degree to which those mechanisms may be
flexible as conditions change, especially if closely related
species or ecological gradients are available for comparison.
A combined approach integrating analysis of population
connectivity, demographic history, and detection of outlier
loci that may be under selection all in the context of
future distribution modelling, represents a framework for
investigating how focal species may respond at the genomic
level to changing environmental conditions. For instance,
if many populations in a single mountain range are locally
adapted to different thermal regimes then the rate and
direction of migration (i.e. the potential for the spread of
adaptive genetic diversity) among populations is a critical
component of any species-wide adaptive response.

V. CONSERVATION

Despite the documented importance of alpine headwaters to
biodiversity at the scale of whole stream networks (e.g. Finn
et al., 2013), there has been little emphasis on developing
management strategies for biodiversity conservation in these
systems (Khamis et al., 2014b). Unlike in lowland rivers where
climate change is proceeding more slowly and conservation
management and restoration practices typically emphasize
returning systems back to some historical steady state from
other types of anthropogenic impacts, rapid climate change is
the single greatest threat to the integrity of otherwise pristine
alpine streams (Hannah et al., 2007). As such, conservation
management in alpine streams is a daunting prospect, often
perceived to be insurmountable due to the limited potential to
reverse the environmental effects of climate change (Khamis
et al., 2014b). Therefore, the common conservation strategy
of protecting individual, range-restricted or rare species and
intraspecific genetic diversity (e.g. Allendorf & Luikart, 2007)
may have minimal benefit in alpine streams. Instead, Khamis
et al. (2014b) call for a shift in focus from single species of
concern to conserving ecosystem processes when possible,
including maintaining or enhancing biological connectivity
among alpine basins and limiting additional anthropogenic
stressors.

However, even under this promising, more holistic
conservation framework of maintaining ecosystem processes
and broad swathes of heterogeneous habitat (e.g. Linke,
Turak & Nel, 2011), we can still expect a systematic
disappearance of many headwater streams fed by the melting
of ice or snow under future warming scenarios, along with
the unique species and genetic variation they harbour. In
terms of biodiversity conservation in alpine streams, then, a
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worthwhile goal is to identify and prioritize the protection
of robust local populations of cold stenothermic species
associated with meltwater habitat (e.g. Finn & Adler, 2006),
as well as meltwater-associated habitats that are likely to be
most resistant to climate change. As part of this process,
robust assessments of species boundaries from multi-locus
genetic data will be an important component of conservation
strategies (e.g. Grummer, Bryson & Reeder, 2014; Hime
et al., 2016; Hotaling et al., 2016). Although many alpine
glaciers and associated meltwater habitats are expected to
disappear in the near future (Hall & Fagre, 2003; Edmunds
et al., 2012), it is becoming increasingly apparent that there
are other types of extremely cold meltwater habitat (not
previously recognized in the alpine stream ecology literature)
that might be more resistant to change and could serve
as climate refugia for cold-adapted biota. Specifically, rock
glaciers – subsurface masses of ice and rock debris – act as
hydrologic sources for some alpine streams and are likely
more resistant to atmospheric warming due to the overlying
layers of insulating debris (Millar & Westfall, 2008; Fegel et al.,
2016). Streams primarily fed by rock glacier meltwater might
contain robust populations of cold stenothermic species of
concern (e.g. Muhlfeld et al., 2011; Giersch et al., 2015, 2016)
and would therefore be ideal sites to prioritize for biodiversity
conservation (as per Finn, Bogan & Lytle, 2009). We
advocate an integration of the approaches described above,
including remote sensing for locating rock-glacier-fed streams
and other potentially resistant alpine stream types, genetic
methods for determining recent population demographics
and species boundaries, and temporal sampling to evaluate
population stability through time, as an effective toolkit
for making conservation decisions for alpine stream
biodiversity.

VI. CONCLUSIONS

(1) Alpine stream ecosystems contain disproportionately
high biodiversity at multiple levels of taxonomic resolution,
from genes to communities. This biodiversity, along with
extensive environmental heterogeneity, natural geographic
isolation, generally low anthropogenic impact, and rapid
warming at high altitudes combine to make alpine streams
sentinels of environmental change on a global scale.
Increasing environmental homogenization of alpine streams
with climate change, and potential ramifications from
both biodiversity conservation and ecosystem function
perspectives, are of major concern. It is timely and
important to increase our understanding of the processes
affecting alpine stream biodiversity and to make scientifically
defensible conservation decisions for protecting the
evolutionary legacy of these imperiled ecosystems.

(2) We identify and summarize seven major,
organism-focused research approaches that have been
applied in alpine stream research both historically and more
recently. These approaches vary from basic observational

research of environmental conditions and macroscopic
organisms to approaches emphasizing newly developed
methods. Through awareness of existing methods and tools,
future researchers are better suited to address research
questions in an integrated, collaborative framework.

(3) To develop a more robust understanding of the
processes affecting alpine stream biodiversity under climate
change, we advocate the following: (i) thoughtful integration
of the seven approaches, with a specific focus on
combinations of traditional and emerging approaches,
to address complex hypotheses spanning multiple levels
of biological organization; (ii) increased multidisciplinary
collaboration, specifically to integrate useful tools outside of
biology (e.g. remote sensing); (iii) systematic development
and expansion of international research networks and
the establishment of agreed-upon standards for sample
collection, database management, and communication; and
(iv) application of high-resolution genomic methods to
address evolutionary, systematic, and conservation questions
for alpine stream species.

(4) Because the single greatest threat to alpine stream
organisms is climate change, biodiversity conservation is
a daunting challenge, and to date, minimal emphasis has
been placed on this aspect of alpine stream biology. We
suggest the best way forward for conserving threatened
species is to identify and prioritize demographically stable,
genetically diverse populations occupying stream sites with
the maximum possible resistance to changing environmental
conditions.
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Füreder, L. (1999). High-alpine streams: cold habitats for insect larvae. In Cold-Adapted

Organisms (eds R. Margesin and F. Schinner), pp.181–196. Springer, Berlin,
Heidelberg.
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Füreder, L., Schütz, C., Wallinger, M. & Burger, R. (2001). Physio-chemistry
and aquatic insects of a glacier-fed and a spring-fed alpine stream. Freshwater Biology

46, 1673–1690.*
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Alpen in Tirol (Diptera: Chironomidae: Diamesinae). Entomologica Germanica 2,
35–43.*

Kownacki, A. (1985). Effect of droughts on the invertebrate communities of
high mountain streams. Verhandlungen der Internationale Vereinigung für Theoretische und

Angewandte Limnologie 22, 2069–2072.*
Kownacki, A. (1987). Benthic invertebrate fauna of high mountain streams in the

Caucasus. Acta Universitatis Lodziensis 2, 89–99.*
Kownacki, A. (1991). Zonal distribution and classification of the invertebrate

communities in high mountain streams in South Tyrol (Italy). Verhandlungen der

Internationale Vereinigung für Theoretische und Angewandte Limnologie 24, 2010–2014.*
Kubo, J. S., Torgersen, C. E., Bolton, S. M., Weekes, A. A. & Gara, R. I. (2012).

Aquatic insect assemblages associated with subalpine stream segment types in relict
glaciated headwaters. Insect Conservation and Diversity 6, 422–434.*

Kubow, K. B., Robinson, C. T., Shama, L. N. S. & Jokela, J. (2010). Spatial scaling
in the phylogeography of an alpine caddisfly, Allogamus uncatus, within the central
European Alps. Journal of the North American Benthological Society 29, 1089–1099.*

Kuhn, J., Andino, P., Calvez, R., Espinosa, R., Hamerlik, L., Vie, S., Dangles,
O. & Jacobsen, D. (2011). Spatial variability in macroinvertebrate assemblages
along and among neighbouring equatorial glacier-fed streams. Freshwater Biology 56,
2226–2244.*

La Frenierre, J. & Mark, B. G. (2014). A review of methods for estimating the
contribution of glacial meltwater to total watershed discharge. Progress in Physical

Geography 38, 173–200.
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